The norm of uniform convergence on the k-algebraic maximal spectrum of an algebra over a non-archimedean valuation field k
نویسندگان
چکیده
© Mémoires de la S. M. F., 1974, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
Positive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملOn the maximal ideal space of extended polynomial and rational uniform algebras
Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...
متن کاملLower bounds of heights of points on hypersurfaces
Let us first recall Lehmer’s conjecture [Le] on lower bounds for the height of an algebraic number which was stated in 1933. Let K be an algebraic number field of degree D over Q. For any valuation v we denote Dv = [Kv : Qv], where Kv,Qv are the completions of K,Q with respect to v. For archimedean v we normalise the valuation by |xv| = |x|Dv/D where |.| is the ordinary complex absolute value. ...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملAlgebraic $ $ K $ $ K - theory of the infinite place
We show that the algebraic K -theory of generalized archimedean valuation rings occurring in Durov’s compactification of the spectrum of a number ring is given by stable homotopy groups of certain classifying spaces.We also show that the “residue field at infinity” is badly behaved from a K -theoretic point of view.
متن کامل